skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Xiaolong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing complexity of integrated circuit design requires customizing Power, Performance, and Area (PPA) metrics according to different application demands. However, most engineers cannot anticipate requirements early in the design process, often discovering mismatches only after synthesis, necessitating iterative optimization or redesign. Some works have shown the promising capabilities of large language models (LLMs) in hardware design generation tasks, but they fail to tackle the PPA trade-off problem. In this work, we propose an LLM-based reinforcement learning framework, PPA-RTL, aiming to introduce LLMs as a cutting-edge automation tool by directly incorporating post-synthesis metrics PPA into the hardware design generation phase. We design PPA metrics as reward feedback to guide the model in producing designs aligned with specific optimization objectives across various scenarios. The experimental results demonstrate that PPA-RTL models, optimized for Power, Performance, Area, or their various combinations, significantly improve in achieving the desired trade-offs, making PPA-RTL applicable to a variety of application scenarios and project constraints. 
    more » « less
    Free, publicly-accessible full text available November 29, 2026
  2. Integrated circuit design is a highly complex and time-consuming process. Leveraging large language models (LLMs) for automating hardware design generation is receiving increasing attention. A prominent challenge is that the inherent structure of the text is overlooked during the training process. Existing efforts focus on supervised fine-tuning LLMs to acquire specialized knowledge in hardware design, without considering the conflict between LLMs' linear data processing and the structural nature inherent in hardware design. In this work, we propose a novel LLM-based reinforcement learning (RL) framework that integrates Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs). Our approach enhances the accuracy of generated hardware code by capturing the syntactic and semantic structures of hardware designs. Experimental results show that the SFT-RL model integrated with Text, AST, and DFG achieves notable improvements: a 12.57% increase on VerilogEval-Human and a 5.49% increase on VerilogEval-Machine, outperforming GPT-4; a 14.29% improvement on RTLLM, approaching GPT-4. 
    more » « less
    Free, publicly-accessible full text available November 20, 2026
  3. Free, publicly-accessible full text available October 26, 2026
  4. Free, publicly-accessible full text available September 8, 2026
  5. Stein, Karen (Ed.)
    Financial exploitation of older adults is rising significantly, necessitating effective interventions. This qualitative study examined perceptions and experiences of technology use among 40 adults over age 60 through rural and urban focus groups. Three primary themes emerged: technology knowledge gaps, trust and privacy concerns dependent on source credibility, and reactive rather than proactive approaches to combating financial exploitation. Urban participants demonstrated greater technology comfort and more sophisticated protective strategies than their rural counterparts. Findings suggest that effective interventions should provide in-person, step-by-step guidance from trusted institutions, simplify technical terminology, and promote proactive security measures. 
    more » « less
    Free, publicly-accessible full text available August 6, 2026
  6. Free, publicly-accessible full text available June 29, 2026
  7. Free, publicly-accessible full text available June 29, 2026
  8. Hardware security verification in hardware design has been identified as a significant bottleneck due to complexity and time-to-market constraints. Assertion-Based Verification is a recognized solution to this challenge; however, assertion generation relies on expertise and labor. While LLMs show promise as automated tools, existing approaches often rely on complex prompt engineering, requiring expert validation. The challenge lies in identifying effective methods for constructing training datasets that enhance LLMs' hardware performance. We introduce HADA (Hardware Assertion through Data Augmentation), a novel framework to train hardware debug specific expert LLM by leveraging its ability to integrate knowledge from formal verification tools, hardware security knowledge database, and version control system. Our results demonstrate that integrating multi-source data significantly enhances the effectiveness of hardware security verification, with each addressing the limitations of the others. 
    more » « less
    Free, publicly-accessible full text available June 23, 2026
  9. Free, publicly-accessible full text available June 23, 2026
  10. Abstract Protein language models (pLMs) have been widely adopted for various protein and peptide-related downstream tasks and demonstrated promising performance. However, short peptides are significantly underrepresented in commonly used pLM training datasets. For example, only 2.8% of sequences in the UniProt Reference Cluster (UniRef) contain fewer than 50 residues, which potentially limits the effectiveness of pLMs for peptide-specific applications. Here, we present PepBERT, a lightweight and efficient peptide language model specifically designed for encoding peptide sequences. Two versions of the model—PepBERT-large (4.9 million parameters) and PepBERT-small (1.86 million parameters)—were pretrained from scratch using four custom peptide datasets and evaluated on nine peptide-related downstream prediction tasks. Both PepBERT models achieved performance superior to or comparable to the benchmark model, ESM-2 with 7.5 million parameters, on 8 out of 9 datasets. Overall, PepBERT provides a compact yet effective solution for generating high-quality peptide representations for downstream applications. By enabling more accurate representation and prediction of bioactive peptides, PepBERT can accelerate the discovery of food-derived bioactive peptides with health-promoting properties, supporting the development of sustainable functional foods and value-added utilization of food processing by-products. The datasets, source codes, pretrained models, and tutorials for the usage of PepBERT are available athttps://github.com/dzjxzyd/PepBERT. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026